Source file src/runtime/export_test.go

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Export guts for testing.
     6  
     7  package runtime
     8  
     9  import (
    10  	"internal/abi"
    11  	"internal/goarch"
    12  	"internal/goos"
    13  	"internal/runtime/atomic"
    14  	"runtime/internal/sys"
    15  	"unsafe"
    16  )
    17  
    18  var Fadd64 = fadd64
    19  var Fsub64 = fsub64
    20  var Fmul64 = fmul64
    21  var Fdiv64 = fdiv64
    22  var F64to32 = f64to32
    23  var F32to64 = f32to64
    24  var Fcmp64 = fcmp64
    25  var Fintto64 = fintto64
    26  var F64toint = f64toint
    27  
    28  var Entersyscall = entersyscall
    29  var Exitsyscall = exitsyscall
    30  var LockedOSThread = lockedOSThread
    31  var Xadduintptr = atomic.Xadduintptr
    32  
    33  var ReadRandomFailed = &readRandomFailed
    34  
    35  var Fastlog2 = fastlog2
    36  
    37  var Atoi = atoi
    38  var Atoi32 = atoi32
    39  var ParseByteCount = parseByteCount
    40  
    41  var Nanotime = nanotime
    42  var NetpollBreak = netpollBreak
    43  var Usleep = usleep
    44  
    45  var PhysPageSize = physPageSize
    46  var PhysHugePageSize = physHugePageSize
    47  
    48  var NetpollGenericInit = netpollGenericInit
    49  
    50  var Memmove = memmove
    51  var MemclrNoHeapPointers = memclrNoHeapPointers
    52  
    53  var CgoCheckPointer = cgoCheckPointer
    54  
    55  const CrashStackImplemented = crashStackImplemented
    56  
    57  const TracebackInnerFrames = tracebackInnerFrames
    58  const TracebackOuterFrames = tracebackOuterFrames
    59  
    60  var MapKeys = keys
    61  var MapValues = values
    62  
    63  var LockPartialOrder = lockPartialOrder
    64  
    65  type TimeTimer = timeTimer
    66  
    67  type LockRank lockRank
    68  
    69  func (l LockRank) String() string {
    70  	return lockRank(l).String()
    71  }
    72  
    73  const PreemptMSupported = preemptMSupported
    74  
    75  type LFNode struct {
    76  	Next    uint64
    77  	Pushcnt uintptr
    78  }
    79  
    80  func LFStackPush(head *uint64, node *LFNode) {
    81  	(*lfstack)(head).push((*lfnode)(unsafe.Pointer(node)))
    82  }
    83  
    84  func LFStackPop(head *uint64) *LFNode {
    85  	return (*LFNode)((*lfstack)(head).pop())
    86  }
    87  func LFNodeValidate(node *LFNode) {
    88  	lfnodeValidate((*lfnode)(unsafe.Pointer(node)))
    89  }
    90  
    91  func Netpoll(delta int64) {
    92  	systemstack(func() {
    93  		netpoll(delta)
    94  	})
    95  }
    96  
    97  func GCMask(x any) (ret []byte) {
    98  	systemstack(func() {
    99  		ret = getgcmask(x)
   100  	})
   101  	return
   102  }
   103  
   104  func RunSchedLocalQueueTest() {
   105  	pp := new(p)
   106  	gs := make([]g, len(pp.runq))
   107  	Escape(gs) // Ensure gs doesn't move, since we use guintptrs
   108  	for i := 0; i < len(pp.runq); i++ {
   109  		if g, _ := runqget(pp); g != nil {
   110  			throw("runq is not empty initially")
   111  		}
   112  		for j := 0; j < i; j++ {
   113  			runqput(pp, &gs[i], false)
   114  		}
   115  		for j := 0; j < i; j++ {
   116  			if g, _ := runqget(pp); g != &gs[i] {
   117  				print("bad element at iter ", i, "/", j, "\n")
   118  				throw("bad element")
   119  			}
   120  		}
   121  		if g, _ := runqget(pp); g != nil {
   122  			throw("runq is not empty afterwards")
   123  		}
   124  	}
   125  }
   126  
   127  func RunSchedLocalQueueStealTest() {
   128  	p1 := new(p)
   129  	p2 := new(p)
   130  	gs := make([]g, len(p1.runq))
   131  	Escape(gs) // Ensure gs doesn't move, since we use guintptrs
   132  	for i := 0; i < len(p1.runq); i++ {
   133  		for j := 0; j < i; j++ {
   134  			gs[j].sig = 0
   135  			runqput(p1, &gs[j], false)
   136  		}
   137  		gp := runqsteal(p2, p1, true)
   138  		s := 0
   139  		if gp != nil {
   140  			s++
   141  			gp.sig++
   142  		}
   143  		for {
   144  			gp, _ = runqget(p2)
   145  			if gp == nil {
   146  				break
   147  			}
   148  			s++
   149  			gp.sig++
   150  		}
   151  		for {
   152  			gp, _ = runqget(p1)
   153  			if gp == nil {
   154  				break
   155  			}
   156  			gp.sig++
   157  		}
   158  		for j := 0; j < i; j++ {
   159  			if gs[j].sig != 1 {
   160  				print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n")
   161  				throw("bad element")
   162  			}
   163  		}
   164  		if s != i/2 && s != i/2+1 {
   165  			print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n")
   166  			throw("bad steal")
   167  		}
   168  	}
   169  }
   170  
   171  func RunSchedLocalQueueEmptyTest(iters int) {
   172  	// Test that runq is not spuriously reported as empty.
   173  	// Runq emptiness affects scheduling decisions and spurious emptiness
   174  	// can lead to underutilization (both runnable Gs and idle Ps coexist
   175  	// for arbitrary long time).
   176  	done := make(chan bool, 1)
   177  	p := new(p)
   178  	gs := make([]g, 2)
   179  	Escape(gs) // Ensure gs doesn't move, since we use guintptrs
   180  	ready := new(uint32)
   181  	for i := 0; i < iters; i++ {
   182  		*ready = 0
   183  		next0 := (i & 1) == 0
   184  		next1 := (i & 2) == 0
   185  		runqput(p, &gs[0], next0)
   186  		go func() {
   187  			for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; {
   188  			}
   189  			if runqempty(p) {
   190  				println("next:", next0, next1)
   191  				throw("queue is empty")
   192  			}
   193  			done <- true
   194  		}()
   195  		for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; {
   196  		}
   197  		runqput(p, &gs[1], next1)
   198  		runqget(p)
   199  		<-done
   200  		runqget(p)
   201  	}
   202  }
   203  
   204  var (
   205  	StringHash = stringHash
   206  	BytesHash  = bytesHash
   207  	Int32Hash  = int32Hash
   208  	Int64Hash  = int64Hash
   209  	MemHash    = memhash
   210  	MemHash32  = memhash32
   211  	MemHash64  = memhash64
   212  	EfaceHash  = efaceHash
   213  	IfaceHash  = ifaceHash
   214  )
   215  
   216  var UseAeshash = &useAeshash
   217  
   218  func MemclrBytes(b []byte) {
   219  	s := (*slice)(unsafe.Pointer(&b))
   220  	memclrNoHeapPointers(s.array, uintptr(s.len))
   221  }
   222  
   223  const HashLoad = hashLoad
   224  
   225  // entry point for testing
   226  func GostringW(w []uint16) (s string) {
   227  	systemstack(func() {
   228  		s = gostringw(&w[0])
   229  	})
   230  	return
   231  }
   232  
   233  var Open = open
   234  var Close = closefd
   235  var Read = read
   236  var Write = write
   237  
   238  func Envs() []string     { return envs }
   239  func SetEnvs(e []string) { envs = e }
   240  
   241  const PtrSize = goarch.PtrSize
   242  
   243  var ForceGCPeriod = &forcegcperiod
   244  
   245  // SetTracebackEnv is like runtime/debug.SetTraceback, but it raises
   246  // the "environment" traceback level, so later calls to
   247  // debug.SetTraceback (e.g., from testing timeouts) can't lower it.
   248  func SetTracebackEnv(level string) {
   249  	setTraceback(level)
   250  	traceback_env = traceback_cache
   251  }
   252  
   253  var ReadUnaligned32 = readUnaligned32
   254  var ReadUnaligned64 = readUnaligned64
   255  
   256  func CountPagesInUse() (pagesInUse, counted uintptr) {
   257  	stw := stopTheWorld(stwForTestCountPagesInUse)
   258  
   259  	pagesInUse = mheap_.pagesInUse.Load()
   260  
   261  	for _, s := range mheap_.allspans {
   262  		if s.state.get() == mSpanInUse {
   263  			counted += s.npages
   264  		}
   265  	}
   266  
   267  	startTheWorld(stw)
   268  
   269  	return
   270  }
   271  
   272  func Fastrand() uint32          { return uint32(rand()) }
   273  func Fastrand64() uint64        { return rand() }
   274  func Fastrandn(n uint32) uint32 { return randn(n) }
   275  
   276  type ProfBuf profBuf
   277  
   278  func NewProfBuf(hdrsize, bufwords, tags int) *ProfBuf {
   279  	return (*ProfBuf)(newProfBuf(hdrsize, bufwords, tags))
   280  }
   281  
   282  func (p *ProfBuf) Write(tag *unsafe.Pointer, now int64, hdr []uint64, stk []uintptr) {
   283  	(*profBuf)(p).write(tag, now, hdr, stk)
   284  }
   285  
   286  const (
   287  	ProfBufBlocking    = profBufBlocking
   288  	ProfBufNonBlocking = profBufNonBlocking
   289  )
   290  
   291  func (p *ProfBuf) Read(mode profBufReadMode) ([]uint64, []unsafe.Pointer, bool) {
   292  	return (*profBuf)(p).read(mode)
   293  }
   294  
   295  func (p *ProfBuf) Close() {
   296  	(*profBuf)(p).close()
   297  }
   298  
   299  type CPUStats = cpuStats
   300  
   301  func ReadCPUStats() CPUStats {
   302  	return work.cpuStats
   303  }
   304  
   305  func ReadMetricsSlow(memStats *MemStats, samplesp unsafe.Pointer, len, cap int) {
   306  	stw := stopTheWorld(stwForTestReadMetricsSlow)
   307  
   308  	// Initialize the metrics beforehand because this could
   309  	// allocate and skew the stats.
   310  	metricsLock()
   311  	initMetrics()
   312  
   313  	systemstack(func() {
   314  		// Donate the racectx to g0. readMetricsLocked calls into the race detector
   315  		// via map access.
   316  		getg().racectx = getg().m.curg.racectx
   317  
   318  		// Read the metrics once before in case it allocates and skews the metrics.
   319  		// readMetricsLocked is designed to only allocate the first time it is called
   320  		// with a given slice of samples. In effect, this extra read tests that this
   321  		// remains true, since otherwise the second readMetricsLocked below could
   322  		// allocate before it returns.
   323  		readMetricsLocked(samplesp, len, cap)
   324  
   325  		// Read memstats first. It's going to flush
   326  		// the mcaches which readMetrics does not do, so
   327  		// going the other way around may result in
   328  		// inconsistent statistics.
   329  		readmemstats_m(memStats)
   330  
   331  		// Read metrics again. We need to be sure we're on the
   332  		// system stack with readmemstats_m so that we don't call into
   333  		// the stack allocator and adjust metrics between there and here.
   334  		readMetricsLocked(samplesp, len, cap)
   335  
   336  		// Undo the donation.
   337  		getg().racectx = 0
   338  	})
   339  	metricsUnlock()
   340  
   341  	startTheWorld(stw)
   342  }
   343  
   344  var DoubleCheckReadMemStats = &doubleCheckReadMemStats
   345  
   346  // ReadMemStatsSlow returns both the runtime-computed MemStats and
   347  // MemStats accumulated by scanning the heap.
   348  func ReadMemStatsSlow() (base, slow MemStats) {
   349  	stw := stopTheWorld(stwForTestReadMemStatsSlow)
   350  
   351  	// Run on the system stack to avoid stack growth allocation.
   352  	systemstack(func() {
   353  		// Make sure stats don't change.
   354  		getg().m.mallocing++
   355  
   356  		readmemstats_m(&base)
   357  
   358  		// Initialize slow from base and zero the fields we're
   359  		// recomputing.
   360  		slow = base
   361  		slow.Alloc = 0
   362  		slow.TotalAlloc = 0
   363  		slow.Mallocs = 0
   364  		slow.Frees = 0
   365  		slow.HeapReleased = 0
   366  		var bySize [_NumSizeClasses]struct {
   367  			Mallocs, Frees uint64
   368  		}
   369  
   370  		// Add up current allocations in spans.
   371  		for _, s := range mheap_.allspans {
   372  			if s.state.get() != mSpanInUse {
   373  				continue
   374  			}
   375  			if s.isUnusedUserArenaChunk() {
   376  				continue
   377  			}
   378  			if sizeclass := s.spanclass.sizeclass(); sizeclass == 0 {
   379  				slow.Mallocs++
   380  				slow.Alloc += uint64(s.elemsize)
   381  			} else {
   382  				slow.Mallocs += uint64(s.allocCount)
   383  				slow.Alloc += uint64(s.allocCount) * uint64(s.elemsize)
   384  				bySize[sizeclass].Mallocs += uint64(s.allocCount)
   385  			}
   386  		}
   387  
   388  		// Add in frees by just reading the stats for those directly.
   389  		var m heapStatsDelta
   390  		memstats.heapStats.unsafeRead(&m)
   391  
   392  		// Collect per-sizeclass free stats.
   393  		var smallFree uint64
   394  		for i := 0; i < _NumSizeClasses; i++ {
   395  			slow.Frees += m.smallFreeCount[i]
   396  			bySize[i].Frees += m.smallFreeCount[i]
   397  			bySize[i].Mallocs += m.smallFreeCount[i]
   398  			smallFree += m.smallFreeCount[i] * uint64(class_to_size[i])
   399  		}
   400  		slow.Frees += m.tinyAllocCount + m.largeFreeCount
   401  		slow.Mallocs += slow.Frees
   402  
   403  		slow.TotalAlloc = slow.Alloc + m.largeFree + smallFree
   404  
   405  		for i := range slow.BySize {
   406  			slow.BySize[i].Mallocs = bySize[i].Mallocs
   407  			slow.BySize[i].Frees = bySize[i].Frees
   408  		}
   409  
   410  		for i := mheap_.pages.start; i < mheap_.pages.end; i++ {
   411  			chunk := mheap_.pages.tryChunkOf(i)
   412  			if chunk == nil {
   413  				continue
   414  			}
   415  			pg := chunk.scavenged.popcntRange(0, pallocChunkPages)
   416  			slow.HeapReleased += uint64(pg) * pageSize
   417  		}
   418  		for _, p := range allp {
   419  			pg := sys.OnesCount64(p.pcache.scav)
   420  			slow.HeapReleased += uint64(pg) * pageSize
   421  		}
   422  
   423  		getg().m.mallocing--
   424  	})
   425  
   426  	startTheWorld(stw)
   427  	return
   428  }
   429  
   430  // ShrinkStackAndVerifyFramePointers attempts to shrink the stack of the current goroutine
   431  // and verifies that unwinding the new stack doesn't crash, even if the old
   432  // stack has been freed or reused (simulated via poisoning).
   433  func ShrinkStackAndVerifyFramePointers() {
   434  	before := stackPoisonCopy
   435  	defer func() { stackPoisonCopy = before }()
   436  	stackPoisonCopy = 1
   437  
   438  	gp := getg()
   439  	systemstack(func() {
   440  		shrinkstack(gp)
   441  	})
   442  	// If our new stack contains frame pointers into the old stack, this will
   443  	// crash because the old stack has been poisoned.
   444  	FPCallers(make([]uintptr, 1024))
   445  }
   446  
   447  // BlockOnSystemStack switches to the system stack, prints "x\n" to
   448  // stderr, and blocks in a stack containing
   449  // "runtime.blockOnSystemStackInternal".
   450  func BlockOnSystemStack() {
   451  	systemstack(blockOnSystemStackInternal)
   452  }
   453  
   454  func blockOnSystemStackInternal() {
   455  	print("x\n")
   456  	lock(&deadlock)
   457  	lock(&deadlock)
   458  }
   459  
   460  type RWMutex struct {
   461  	rw rwmutex
   462  }
   463  
   464  func (rw *RWMutex) Init() {
   465  	rw.rw.init(lockRankTestR, lockRankTestRInternal, lockRankTestW)
   466  }
   467  
   468  func (rw *RWMutex) RLock() {
   469  	rw.rw.rlock()
   470  }
   471  
   472  func (rw *RWMutex) RUnlock() {
   473  	rw.rw.runlock()
   474  }
   475  
   476  func (rw *RWMutex) Lock() {
   477  	rw.rw.lock()
   478  }
   479  
   480  func (rw *RWMutex) Unlock() {
   481  	rw.rw.unlock()
   482  }
   483  
   484  const RuntimeHmapSize = unsafe.Sizeof(hmap{})
   485  
   486  func MapBucketsCount(m map[int]int) int {
   487  	h := *(**hmap)(unsafe.Pointer(&m))
   488  	return 1 << h.B
   489  }
   490  
   491  func MapBucketsPointerIsNil(m map[int]int) bool {
   492  	h := *(**hmap)(unsafe.Pointer(&m))
   493  	return h.buckets == nil
   494  }
   495  
   496  func OverLoadFactor(count int, B uint8) bool {
   497  	return overLoadFactor(count, B)
   498  }
   499  
   500  func LockOSCounts() (external, internal uint32) {
   501  	gp := getg()
   502  	if gp.m.lockedExt+gp.m.lockedInt == 0 {
   503  		if gp.lockedm != 0 {
   504  			panic("lockedm on non-locked goroutine")
   505  		}
   506  	} else {
   507  		if gp.lockedm == 0 {
   508  			panic("nil lockedm on locked goroutine")
   509  		}
   510  	}
   511  	return gp.m.lockedExt, gp.m.lockedInt
   512  }
   513  
   514  //go:noinline
   515  func TracebackSystemstack(stk []uintptr, i int) int {
   516  	if i == 0 {
   517  		pc, sp := getcallerpc(), getcallersp()
   518  		var u unwinder
   519  		u.initAt(pc, sp, 0, getg(), unwindJumpStack) // Don't ignore errors, for testing
   520  		return tracebackPCs(&u, 0, stk)
   521  	}
   522  	n := 0
   523  	systemstack(func() {
   524  		n = TracebackSystemstack(stk, i-1)
   525  	})
   526  	return n
   527  }
   528  
   529  func KeepNArenaHints(n int) {
   530  	hint := mheap_.arenaHints
   531  	for i := 1; i < n; i++ {
   532  		hint = hint.next
   533  		if hint == nil {
   534  			return
   535  		}
   536  	}
   537  	hint.next = nil
   538  }
   539  
   540  // MapNextArenaHint reserves a page at the next arena growth hint,
   541  // preventing the arena from growing there, and returns the range of
   542  // addresses that are no longer viable.
   543  //
   544  // This may fail to reserve memory. If it fails, it still returns the
   545  // address range it attempted to reserve.
   546  func MapNextArenaHint() (start, end uintptr, ok bool) {
   547  	hint := mheap_.arenaHints
   548  	addr := hint.addr
   549  	if hint.down {
   550  		start, end = addr-heapArenaBytes, addr
   551  		addr -= physPageSize
   552  	} else {
   553  		start, end = addr, addr+heapArenaBytes
   554  	}
   555  	got := sysReserve(unsafe.Pointer(addr), physPageSize)
   556  	ok = (addr == uintptr(got))
   557  	if !ok {
   558  		// We were unable to get the requested reservation.
   559  		// Release what we did get and fail.
   560  		sysFreeOS(got, physPageSize)
   561  	}
   562  	return
   563  }
   564  
   565  func GetNextArenaHint() uintptr {
   566  	return mheap_.arenaHints.addr
   567  }
   568  
   569  type G = g
   570  
   571  type Sudog = sudog
   572  
   573  func Getg() *G {
   574  	return getg()
   575  }
   576  
   577  func Goid() uint64 {
   578  	return getg().goid
   579  }
   580  
   581  func GIsWaitingOnMutex(gp *G) bool {
   582  	return readgstatus(gp) == _Gwaiting && gp.waitreason.isMutexWait()
   583  }
   584  
   585  var CasGStatusAlwaysTrack = &casgstatusAlwaysTrack
   586  
   587  //go:noinline
   588  func PanicForTesting(b []byte, i int) byte {
   589  	return unexportedPanicForTesting(b, i)
   590  }
   591  
   592  //go:noinline
   593  func unexportedPanicForTesting(b []byte, i int) byte {
   594  	return b[i]
   595  }
   596  
   597  func G0StackOverflow() {
   598  	systemstack(func() {
   599  		g0 := getg()
   600  		sp := getcallersp()
   601  		// The stack bounds for g0 stack is not always precise.
   602  		// Use an artificially small stack, to trigger a stack overflow
   603  		// without actually run out of the system stack (which may seg fault).
   604  		g0.stack.lo = sp - 4096 - stackSystem
   605  		g0.stackguard0 = g0.stack.lo + stackGuard
   606  		g0.stackguard1 = g0.stackguard0
   607  
   608  		stackOverflow(nil)
   609  	})
   610  }
   611  
   612  func stackOverflow(x *byte) {
   613  	var buf [256]byte
   614  	stackOverflow(&buf[0])
   615  }
   616  
   617  func MapTombstoneCheck(m map[int]int) {
   618  	// Make sure emptyOne and emptyRest are distributed correctly.
   619  	// We should have a series of filled and emptyOne cells, followed by
   620  	// a series of emptyRest cells.
   621  	h := *(**hmap)(unsafe.Pointer(&m))
   622  	i := any(m)
   623  	t := *(**maptype)(unsafe.Pointer(&i))
   624  
   625  	for x := 0; x < 1<<h.B; x++ {
   626  		b0 := (*bmap)(add(h.buckets, uintptr(x)*uintptr(t.BucketSize)))
   627  		n := 0
   628  		for b := b0; b != nil; b = b.overflow(t) {
   629  			for i := 0; i < abi.MapBucketCount; i++ {
   630  				if b.tophash[i] != emptyRest {
   631  					n++
   632  				}
   633  			}
   634  		}
   635  		k := 0
   636  		for b := b0; b != nil; b = b.overflow(t) {
   637  			for i := 0; i < abi.MapBucketCount; i++ {
   638  				if k < n && b.tophash[i] == emptyRest {
   639  					panic("early emptyRest")
   640  				}
   641  				if k >= n && b.tophash[i] != emptyRest {
   642  					panic("late non-emptyRest")
   643  				}
   644  				if k == n-1 && b.tophash[i] == emptyOne {
   645  					panic("last non-emptyRest entry is emptyOne")
   646  				}
   647  				k++
   648  			}
   649  		}
   650  	}
   651  }
   652  
   653  func RunGetgThreadSwitchTest() {
   654  	// Test that getg works correctly with thread switch.
   655  	// With gccgo, if we generate getg inlined, the backend
   656  	// may cache the address of the TLS variable, which
   657  	// will become invalid after a thread switch. This test
   658  	// checks that the bad caching doesn't happen.
   659  
   660  	ch := make(chan int)
   661  	go func(ch chan int) {
   662  		ch <- 5
   663  		LockOSThread()
   664  	}(ch)
   665  
   666  	g1 := getg()
   667  
   668  	// Block on a receive. This is likely to get us a thread
   669  	// switch. If we yield to the sender goroutine, it will
   670  	// lock the thread, forcing us to resume on a different
   671  	// thread.
   672  	<-ch
   673  
   674  	g2 := getg()
   675  	if g1 != g2 {
   676  		panic("g1 != g2")
   677  	}
   678  
   679  	// Also test getg after some control flow, as the
   680  	// backend is sensitive to control flow.
   681  	g3 := getg()
   682  	if g1 != g3 {
   683  		panic("g1 != g3")
   684  	}
   685  }
   686  
   687  const (
   688  	PageSize         = pageSize
   689  	PallocChunkPages = pallocChunkPages
   690  	PageAlloc64Bit   = pageAlloc64Bit
   691  	PallocSumBytes   = pallocSumBytes
   692  )
   693  
   694  // Expose pallocSum for testing.
   695  type PallocSum pallocSum
   696  
   697  func PackPallocSum(start, max, end uint) PallocSum { return PallocSum(packPallocSum(start, max, end)) }
   698  func (m PallocSum) Start() uint                    { return pallocSum(m).start() }
   699  func (m PallocSum) Max() uint                      { return pallocSum(m).max() }
   700  func (m PallocSum) End() uint                      { return pallocSum(m).end() }
   701  
   702  // Expose pallocBits for testing.
   703  type PallocBits pallocBits
   704  
   705  func (b *PallocBits) Find(npages uintptr, searchIdx uint) (uint, uint) {
   706  	return (*pallocBits)(b).find(npages, searchIdx)
   707  }
   708  func (b *PallocBits) AllocRange(i, n uint)       { (*pallocBits)(b).allocRange(i, n) }
   709  func (b *PallocBits) Free(i, n uint)             { (*pallocBits)(b).free(i, n) }
   710  func (b *PallocBits) Summarize() PallocSum       { return PallocSum((*pallocBits)(b).summarize()) }
   711  func (b *PallocBits) PopcntRange(i, n uint) uint { return (*pageBits)(b).popcntRange(i, n) }
   712  
   713  // SummarizeSlow is a slow but more obviously correct implementation
   714  // of (*pallocBits).summarize. Used for testing.
   715  func SummarizeSlow(b *PallocBits) PallocSum {
   716  	var start, most, end uint
   717  
   718  	const N = uint(len(b)) * 64
   719  	for start < N && (*pageBits)(b).get(start) == 0 {
   720  		start++
   721  	}
   722  	for end < N && (*pageBits)(b).get(N-end-1) == 0 {
   723  		end++
   724  	}
   725  	run := uint(0)
   726  	for i := uint(0); i < N; i++ {
   727  		if (*pageBits)(b).get(i) == 0 {
   728  			run++
   729  		} else {
   730  			run = 0
   731  		}
   732  		most = max(most, run)
   733  	}
   734  	return PackPallocSum(start, most, end)
   735  }
   736  
   737  // Expose non-trivial helpers for testing.
   738  func FindBitRange64(c uint64, n uint) uint { return findBitRange64(c, n) }
   739  
   740  // Given two PallocBits, returns a set of bit ranges where
   741  // they differ.
   742  func DiffPallocBits(a, b *PallocBits) []BitRange {
   743  	ba := (*pageBits)(a)
   744  	bb := (*pageBits)(b)
   745  
   746  	var d []BitRange
   747  	base, size := uint(0), uint(0)
   748  	for i := uint(0); i < uint(len(ba))*64; i++ {
   749  		if ba.get(i) != bb.get(i) {
   750  			if size == 0 {
   751  				base = i
   752  			}
   753  			size++
   754  		} else {
   755  			if size != 0 {
   756  				d = append(d, BitRange{base, size})
   757  			}
   758  			size = 0
   759  		}
   760  	}
   761  	if size != 0 {
   762  		d = append(d, BitRange{base, size})
   763  	}
   764  	return d
   765  }
   766  
   767  // StringifyPallocBits gets the bits in the bit range r from b,
   768  // and returns a string containing the bits as ASCII 0 and 1
   769  // characters.
   770  func StringifyPallocBits(b *PallocBits, r BitRange) string {
   771  	str := ""
   772  	for j := r.I; j < r.I+r.N; j++ {
   773  		if (*pageBits)(b).get(j) != 0 {
   774  			str += "1"
   775  		} else {
   776  			str += "0"
   777  		}
   778  	}
   779  	return str
   780  }
   781  
   782  // Expose pallocData for testing.
   783  type PallocData pallocData
   784  
   785  func (d *PallocData) FindScavengeCandidate(searchIdx uint, min, max uintptr) (uint, uint) {
   786  	return (*pallocData)(d).findScavengeCandidate(searchIdx, min, max)
   787  }
   788  func (d *PallocData) AllocRange(i, n uint) { (*pallocData)(d).allocRange(i, n) }
   789  func (d *PallocData) ScavengedSetRange(i, n uint) {
   790  	(*pallocData)(d).scavenged.setRange(i, n)
   791  }
   792  func (d *PallocData) PallocBits() *PallocBits {
   793  	return (*PallocBits)(&(*pallocData)(d).pallocBits)
   794  }
   795  func (d *PallocData) Scavenged() *PallocBits {
   796  	return (*PallocBits)(&(*pallocData)(d).scavenged)
   797  }
   798  
   799  // Expose fillAligned for testing.
   800  func FillAligned(x uint64, m uint) uint64 { return fillAligned(x, m) }
   801  
   802  // Expose pageCache for testing.
   803  type PageCache pageCache
   804  
   805  const PageCachePages = pageCachePages
   806  
   807  func NewPageCache(base uintptr, cache, scav uint64) PageCache {
   808  	return PageCache(pageCache{base: base, cache: cache, scav: scav})
   809  }
   810  func (c *PageCache) Empty() bool   { return (*pageCache)(c).empty() }
   811  func (c *PageCache) Base() uintptr { return (*pageCache)(c).base }
   812  func (c *PageCache) Cache() uint64 { return (*pageCache)(c).cache }
   813  func (c *PageCache) Scav() uint64  { return (*pageCache)(c).scav }
   814  func (c *PageCache) Alloc(npages uintptr) (uintptr, uintptr) {
   815  	return (*pageCache)(c).alloc(npages)
   816  }
   817  func (c *PageCache) Flush(s *PageAlloc) {
   818  	cp := (*pageCache)(c)
   819  	sp := (*pageAlloc)(s)
   820  
   821  	systemstack(func() {
   822  		// None of the tests need any higher-level locking, so we just
   823  		// take the lock internally.
   824  		lock(sp.mheapLock)
   825  		cp.flush(sp)
   826  		unlock(sp.mheapLock)
   827  	})
   828  }
   829  
   830  // Expose chunk index type.
   831  type ChunkIdx chunkIdx
   832  
   833  // Expose pageAlloc for testing. Note that because pageAlloc is
   834  // not in the heap, so is PageAlloc.
   835  type PageAlloc pageAlloc
   836  
   837  func (p *PageAlloc) Alloc(npages uintptr) (uintptr, uintptr) {
   838  	pp := (*pageAlloc)(p)
   839  
   840  	var addr, scav uintptr
   841  	systemstack(func() {
   842  		// None of the tests need any higher-level locking, so we just
   843  		// take the lock internally.
   844  		lock(pp.mheapLock)
   845  		addr, scav = pp.alloc(npages)
   846  		unlock(pp.mheapLock)
   847  	})
   848  	return addr, scav
   849  }
   850  func (p *PageAlloc) AllocToCache() PageCache {
   851  	pp := (*pageAlloc)(p)
   852  
   853  	var c PageCache
   854  	systemstack(func() {
   855  		// None of the tests need any higher-level locking, so we just
   856  		// take the lock internally.
   857  		lock(pp.mheapLock)
   858  		c = PageCache(pp.allocToCache())
   859  		unlock(pp.mheapLock)
   860  	})
   861  	return c
   862  }
   863  func (p *PageAlloc) Free(base, npages uintptr) {
   864  	pp := (*pageAlloc)(p)
   865  
   866  	systemstack(func() {
   867  		// None of the tests need any higher-level locking, so we just
   868  		// take the lock internally.
   869  		lock(pp.mheapLock)
   870  		pp.free(base, npages)
   871  		unlock(pp.mheapLock)
   872  	})
   873  }
   874  func (p *PageAlloc) Bounds() (ChunkIdx, ChunkIdx) {
   875  	return ChunkIdx((*pageAlloc)(p).start), ChunkIdx((*pageAlloc)(p).end)
   876  }
   877  func (p *PageAlloc) Scavenge(nbytes uintptr) (r uintptr) {
   878  	pp := (*pageAlloc)(p)
   879  	systemstack(func() {
   880  		r = pp.scavenge(nbytes, nil, true)
   881  	})
   882  	return
   883  }
   884  func (p *PageAlloc) InUse() []AddrRange {
   885  	ranges := make([]AddrRange, 0, len(p.inUse.ranges))
   886  	for _, r := range p.inUse.ranges {
   887  		ranges = append(ranges, AddrRange{r})
   888  	}
   889  	return ranges
   890  }
   891  
   892  // Returns nil if the PallocData's L2 is missing.
   893  func (p *PageAlloc) PallocData(i ChunkIdx) *PallocData {
   894  	ci := chunkIdx(i)
   895  	return (*PallocData)((*pageAlloc)(p).tryChunkOf(ci))
   896  }
   897  
   898  // AddrRange is a wrapper around addrRange for testing.
   899  type AddrRange struct {
   900  	addrRange
   901  }
   902  
   903  // MakeAddrRange creates a new address range.
   904  func MakeAddrRange(base, limit uintptr) AddrRange {
   905  	return AddrRange{makeAddrRange(base, limit)}
   906  }
   907  
   908  // Base returns the virtual base address of the address range.
   909  func (a AddrRange) Base() uintptr {
   910  	return a.addrRange.base.addr()
   911  }
   912  
   913  // Base returns the virtual address of the limit of the address range.
   914  func (a AddrRange) Limit() uintptr {
   915  	return a.addrRange.limit.addr()
   916  }
   917  
   918  // Equals returns true if the two address ranges are exactly equal.
   919  func (a AddrRange) Equals(b AddrRange) bool {
   920  	return a == b
   921  }
   922  
   923  // Size returns the size in bytes of the address range.
   924  func (a AddrRange) Size() uintptr {
   925  	return a.addrRange.size()
   926  }
   927  
   928  // testSysStat is the sysStat passed to test versions of various
   929  // runtime structures. We do actually have to keep track of this
   930  // because otherwise memstats.mappedReady won't actually line up
   931  // with other stats in the runtime during tests.
   932  var testSysStat = &memstats.other_sys
   933  
   934  // AddrRanges is a wrapper around addrRanges for testing.
   935  type AddrRanges struct {
   936  	addrRanges
   937  	mutable bool
   938  }
   939  
   940  // NewAddrRanges creates a new empty addrRanges.
   941  //
   942  // Note that this initializes addrRanges just like in the
   943  // runtime, so its memory is persistentalloc'd. Call this
   944  // function sparingly since the memory it allocates is
   945  // leaked.
   946  //
   947  // This AddrRanges is mutable, so we can test methods like
   948  // Add.
   949  func NewAddrRanges() AddrRanges {
   950  	r := addrRanges{}
   951  	r.init(testSysStat)
   952  	return AddrRanges{r, true}
   953  }
   954  
   955  // MakeAddrRanges creates a new addrRanges populated with
   956  // the ranges in a.
   957  //
   958  // The returned AddrRanges is immutable, so methods like
   959  // Add will fail.
   960  func MakeAddrRanges(a ...AddrRange) AddrRanges {
   961  	// Methods that manipulate the backing store of addrRanges.ranges should
   962  	// not be used on the result from this function (e.g. add) since they may
   963  	// trigger reallocation. That would normally be fine, except the new
   964  	// backing store won't come from the heap, but from persistentalloc, so
   965  	// we'll leak some memory implicitly.
   966  	ranges := make([]addrRange, 0, len(a))
   967  	total := uintptr(0)
   968  	for _, r := range a {
   969  		ranges = append(ranges, r.addrRange)
   970  		total += r.Size()
   971  	}
   972  	return AddrRanges{addrRanges{
   973  		ranges:     ranges,
   974  		totalBytes: total,
   975  		sysStat:    testSysStat,
   976  	}, false}
   977  }
   978  
   979  // Ranges returns a copy of the ranges described by the
   980  // addrRanges.
   981  func (a *AddrRanges) Ranges() []AddrRange {
   982  	result := make([]AddrRange, 0, len(a.addrRanges.ranges))
   983  	for _, r := range a.addrRanges.ranges {
   984  		result = append(result, AddrRange{r})
   985  	}
   986  	return result
   987  }
   988  
   989  // FindSucc returns the successor to base. See addrRanges.findSucc
   990  // for more details.
   991  func (a *AddrRanges) FindSucc(base uintptr) int {
   992  	return a.findSucc(base)
   993  }
   994  
   995  // Add adds a new AddrRange to the AddrRanges.
   996  //
   997  // The AddrRange must be mutable (i.e. created by NewAddrRanges),
   998  // otherwise this method will throw.
   999  func (a *AddrRanges) Add(r AddrRange) {
  1000  	if !a.mutable {
  1001  		throw("attempt to mutate immutable AddrRanges")
  1002  	}
  1003  	a.add(r.addrRange)
  1004  }
  1005  
  1006  // TotalBytes returns the totalBytes field of the addrRanges.
  1007  func (a *AddrRanges) TotalBytes() uintptr {
  1008  	return a.addrRanges.totalBytes
  1009  }
  1010  
  1011  // BitRange represents a range over a bitmap.
  1012  type BitRange struct {
  1013  	I, N uint // bit index and length in bits
  1014  }
  1015  
  1016  // NewPageAlloc creates a new page allocator for testing and
  1017  // initializes it with the scav and chunks maps. Each key in these maps
  1018  // represents a chunk index and each value is a series of bit ranges to
  1019  // set within each bitmap's chunk.
  1020  //
  1021  // The initialization of the pageAlloc preserves the invariant that if a
  1022  // scavenged bit is set the alloc bit is necessarily unset, so some
  1023  // of the bits described by scav may be cleared in the final bitmap if
  1024  // ranges in chunks overlap with them.
  1025  //
  1026  // scav is optional, and if nil, the scavenged bitmap will be cleared
  1027  // (as opposed to all 1s, which it usually is). Furthermore, every
  1028  // chunk index in scav must appear in chunks; ones that do not are
  1029  // ignored.
  1030  func NewPageAlloc(chunks, scav map[ChunkIdx][]BitRange) *PageAlloc {
  1031  	p := new(pageAlloc)
  1032  
  1033  	// We've got an entry, so initialize the pageAlloc.
  1034  	p.init(new(mutex), testSysStat, true)
  1035  	lockInit(p.mheapLock, lockRankMheap)
  1036  	for i, init := range chunks {
  1037  		addr := chunkBase(chunkIdx(i))
  1038  
  1039  		// Mark the chunk's existence in the pageAlloc.
  1040  		systemstack(func() {
  1041  			lock(p.mheapLock)
  1042  			p.grow(addr, pallocChunkBytes)
  1043  			unlock(p.mheapLock)
  1044  		})
  1045  
  1046  		// Initialize the bitmap and update pageAlloc metadata.
  1047  		ci := chunkIndex(addr)
  1048  		chunk := p.chunkOf(ci)
  1049  
  1050  		// Clear all the scavenged bits which grow set.
  1051  		chunk.scavenged.clearRange(0, pallocChunkPages)
  1052  
  1053  		// Simulate the allocation and subsequent free of all pages in
  1054  		// the chunk for the scavenge index. This sets the state equivalent
  1055  		// with all pages within the index being free.
  1056  		p.scav.index.alloc(ci, pallocChunkPages)
  1057  		p.scav.index.free(ci, 0, pallocChunkPages)
  1058  
  1059  		// Apply scavenge state if applicable.
  1060  		if scav != nil {
  1061  			if scvg, ok := scav[i]; ok {
  1062  				for _, s := range scvg {
  1063  					// Ignore the case of s.N == 0. setRange doesn't handle
  1064  					// it and it's a no-op anyway.
  1065  					if s.N != 0 {
  1066  						chunk.scavenged.setRange(s.I, s.N)
  1067  					}
  1068  				}
  1069  			}
  1070  		}
  1071  
  1072  		// Apply alloc state.
  1073  		for _, s := range init {
  1074  			// Ignore the case of s.N == 0. allocRange doesn't handle
  1075  			// it and it's a no-op anyway.
  1076  			if s.N != 0 {
  1077  				chunk.allocRange(s.I, s.N)
  1078  
  1079  				// Make sure the scavenge index is updated.
  1080  				p.scav.index.alloc(ci, s.N)
  1081  			}
  1082  		}
  1083  
  1084  		// Update heap metadata for the allocRange calls above.
  1085  		systemstack(func() {
  1086  			lock(p.mheapLock)
  1087  			p.update(addr, pallocChunkPages, false, false)
  1088  			unlock(p.mheapLock)
  1089  		})
  1090  	}
  1091  
  1092  	return (*PageAlloc)(p)
  1093  }
  1094  
  1095  // FreePageAlloc releases hard OS resources owned by the pageAlloc. Once this
  1096  // is called the pageAlloc may no longer be used. The object itself will be
  1097  // collected by the garbage collector once it is no longer live.
  1098  func FreePageAlloc(pp *PageAlloc) {
  1099  	p := (*pageAlloc)(pp)
  1100  
  1101  	// Free all the mapped space for the summary levels.
  1102  	if pageAlloc64Bit != 0 {
  1103  		for l := 0; l < summaryLevels; l++ {
  1104  			sysFreeOS(unsafe.Pointer(&p.summary[l][0]), uintptr(cap(p.summary[l]))*pallocSumBytes)
  1105  		}
  1106  	} else {
  1107  		resSize := uintptr(0)
  1108  		for _, s := range p.summary {
  1109  			resSize += uintptr(cap(s)) * pallocSumBytes
  1110  		}
  1111  		sysFreeOS(unsafe.Pointer(&p.summary[0][0]), alignUp(resSize, physPageSize))
  1112  	}
  1113  
  1114  	// Free extra data structures.
  1115  	sysFreeOS(unsafe.Pointer(&p.scav.index.chunks[0]), uintptr(cap(p.scav.index.chunks))*unsafe.Sizeof(atomicScavChunkData{}))
  1116  
  1117  	// Subtract back out whatever we mapped for the summaries.
  1118  	// sysUsed adds to p.sysStat and memstats.mappedReady no matter what
  1119  	// (and in anger should actually be accounted for), and there's no other
  1120  	// way to figure out how much we actually mapped.
  1121  	gcController.mappedReady.Add(-int64(p.summaryMappedReady))
  1122  	testSysStat.add(-int64(p.summaryMappedReady))
  1123  
  1124  	// Free the mapped space for chunks.
  1125  	for i := range p.chunks {
  1126  		if x := p.chunks[i]; x != nil {
  1127  			p.chunks[i] = nil
  1128  			// This memory comes from sysAlloc and will always be page-aligned.
  1129  			sysFree(unsafe.Pointer(x), unsafe.Sizeof(*p.chunks[0]), testSysStat)
  1130  		}
  1131  	}
  1132  }
  1133  
  1134  // BaseChunkIdx is a convenient chunkIdx value which works on both
  1135  // 64 bit and 32 bit platforms, allowing the tests to share code
  1136  // between the two.
  1137  //
  1138  // This should not be higher than 0x100*pallocChunkBytes to support
  1139  // mips and mipsle, which only have 31-bit address spaces.
  1140  var BaseChunkIdx = func() ChunkIdx {
  1141  	var prefix uintptr
  1142  	if pageAlloc64Bit != 0 {
  1143  		prefix = 0xc000
  1144  	} else {
  1145  		prefix = 0x100
  1146  	}
  1147  	baseAddr := prefix * pallocChunkBytes
  1148  	if goos.IsAix != 0 {
  1149  		baseAddr += arenaBaseOffset
  1150  	}
  1151  	return ChunkIdx(chunkIndex(baseAddr))
  1152  }()
  1153  
  1154  // PageBase returns an address given a chunk index and a page index
  1155  // relative to that chunk.
  1156  func PageBase(c ChunkIdx, pageIdx uint) uintptr {
  1157  	return chunkBase(chunkIdx(c)) + uintptr(pageIdx)*pageSize
  1158  }
  1159  
  1160  type BitsMismatch struct {
  1161  	Base      uintptr
  1162  	Got, Want uint64
  1163  }
  1164  
  1165  func CheckScavengedBitsCleared(mismatches []BitsMismatch) (n int, ok bool) {
  1166  	ok = true
  1167  
  1168  	// Run on the system stack to avoid stack growth allocation.
  1169  	systemstack(func() {
  1170  		getg().m.mallocing++
  1171  
  1172  		// Lock so that we can safely access the bitmap.
  1173  		lock(&mheap_.lock)
  1174  	chunkLoop:
  1175  		for i := mheap_.pages.start; i < mheap_.pages.end; i++ {
  1176  			chunk := mheap_.pages.tryChunkOf(i)
  1177  			if chunk == nil {
  1178  				continue
  1179  			}
  1180  			for j := 0; j < pallocChunkPages/64; j++ {
  1181  				// Run over each 64-bit bitmap section and ensure
  1182  				// scavenged is being cleared properly on allocation.
  1183  				// If a used bit and scavenged bit are both set, that's
  1184  				// an error, and could indicate a larger problem, or
  1185  				// an accounting problem.
  1186  				want := chunk.scavenged[j] &^ chunk.pallocBits[j]
  1187  				got := chunk.scavenged[j]
  1188  				if want != got {
  1189  					ok = false
  1190  					if n >= len(mismatches) {
  1191  						break chunkLoop
  1192  					}
  1193  					mismatches[n] = BitsMismatch{
  1194  						Base: chunkBase(i) + uintptr(j)*64*pageSize,
  1195  						Got:  got,
  1196  						Want: want,
  1197  					}
  1198  					n++
  1199  				}
  1200  			}
  1201  		}
  1202  		unlock(&mheap_.lock)
  1203  
  1204  		getg().m.mallocing--
  1205  	})
  1206  	return
  1207  }
  1208  
  1209  func PageCachePagesLeaked() (leaked uintptr) {
  1210  	stw := stopTheWorld(stwForTestPageCachePagesLeaked)
  1211  
  1212  	// Walk over destroyed Ps and look for unflushed caches.
  1213  	deadp := allp[len(allp):cap(allp)]
  1214  	for _, p := range deadp {
  1215  		// Since we're going past len(allp) we may see nil Ps.
  1216  		// Just ignore them.
  1217  		if p != nil {
  1218  			leaked += uintptr(sys.OnesCount64(p.pcache.cache))
  1219  		}
  1220  	}
  1221  
  1222  	startTheWorld(stw)
  1223  	return
  1224  }
  1225  
  1226  type Mutex = mutex
  1227  
  1228  var Lock = lock
  1229  var Unlock = unlock
  1230  
  1231  var MutexContended = mutexContended
  1232  
  1233  func SemRootLock(addr *uint32) *mutex {
  1234  	root := semtable.rootFor(addr)
  1235  	return &root.lock
  1236  }
  1237  
  1238  var Semacquire = semacquire
  1239  var Semrelease1 = semrelease1
  1240  
  1241  func SemNwait(addr *uint32) uint32 {
  1242  	root := semtable.rootFor(addr)
  1243  	return root.nwait.Load()
  1244  }
  1245  
  1246  const SemTableSize = semTabSize
  1247  
  1248  // SemTable is a wrapper around semTable exported for testing.
  1249  type SemTable struct {
  1250  	semTable
  1251  }
  1252  
  1253  // Enqueue simulates enqueuing a waiter for a semaphore (or lock) at addr.
  1254  func (t *SemTable) Enqueue(addr *uint32) {
  1255  	s := acquireSudog()
  1256  	s.releasetime = 0
  1257  	s.acquiretime = 0
  1258  	s.ticket = 0
  1259  	t.semTable.rootFor(addr).queue(addr, s, false)
  1260  }
  1261  
  1262  // Dequeue simulates dequeuing a waiter for a semaphore (or lock) at addr.
  1263  //
  1264  // Returns true if there actually was a waiter to be dequeued.
  1265  func (t *SemTable) Dequeue(addr *uint32) bool {
  1266  	s, _, _ := t.semTable.rootFor(addr).dequeue(addr)
  1267  	if s != nil {
  1268  		releaseSudog(s)
  1269  		return true
  1270  	}
  1271  	return false
  1272  }
  1273  
  1274  // mspan wrapper for testing.
  1275  type MSpan mspan
  1276  
  1277  // Allocate an mspan for testing.
  1278  func AllocMSpan() *MSpan {
  1279  	var s *mspan
  1280  	systemstack(func() {
  1281  		lock(&mheap_.lock)
  1282  		s = (*mspan)(mheap_.spanalloc.alloc())
  1283  		unlock(&mheap_.lock)
  1284  	})
  1285  	return (*MSpan)(s)
  1286  }
  1287  
  1288  // Free an allocated mspan.
  1289  func FreeMSpan(s *MSpan) {
  1290  	systemstack(func() {
  1291  		lock(&mheap_.lock)
  1292  		mheap_.spanalloc.free(unsafe.Pointer(s))
  1293  		unlock(&mheap_.lock)
  1294  	})
  1295  }
  1296  
  1297  func MSpanCountAlloc(ms *MSpan, bits []byte) int {
  1298  	s := (*mspan)(ms)
  1299  	s.nelems = uint16(len(bits) * 8)
  1300  	s.gcmarkBits = (*gcBits)(unsafe.Pointer(&bits[0]))
  1301  	result := s.countAlloc()
  1302  	s.gcmarkBits = nil
  1303  	return result
  1304  }
  1305  
  1306  const (
  1307  	TimeHistSubBucketBits = timeHistSubBucketBits
  1308  	TimeHistNumSubBuckets = timeHistNumSubBuckets
  1309  	TimeHistNumBuckets    = timeHistNumBuckets
  1310  	TimeHistMinBucketBits = timeHistMinBucketBits
  1311  	TimeHistMaxBucketBits = timeHistMaxBucketBits
  1312  )
  1313  
  1314  type TimeHistogram timeHistogram
  1315  
  1316  // Counts returns the counts for the given bucket, subBucket indices.
  1317  // Returns true if the bucket was valid, otherwise returns the counts
  1318  // for the overflow bucket if bucket > 0 or the underflow bucket if
  1319  // bucket < 0, and false.
  1320  func (th *TimeHistogram) Count(bucket, subBucket int) (uint64, bool) {
  1321  	t := (*timeHistogram)(th)
  1322  	if bucket < 0 {
  1323  		return t.underflow.Load(), false
  1324  	}
  1325  	i := bucket*TimeHistNumSubBuckets + subBucket
  1326  	if i >= len(t.counts) {
  1327  		return t.overflow.Load(), false
  1328  	}
  1329  	return t.counts[i].Load(), true
  1330  }
  1331  
  1332  func (th *TimeHistogram) Record(duration int64) {
  1333  	(*timeHistogram)(th).record(duration)
  1334  }
  1335  
  1336  var TimeHistogramMetricsBuckets = timeHistogramMetricsBuckets
  1337  
  1338  func SetIntArgRegs(a int) int {
  1339  	lock(&finlock)
  1340  	old := intArgRegs
  1341  	if a >= 0 {
  1342  		intArgRegs = a
  1343  	}
  1344  	unlock(&finlock)
  1345  	return old
  1346  }
  1347  
  1348  func FinalizerGAsleep() bool {
  1349  	return fingStatus.Load()&fingWait != 0
  1350  }
  1351  
  1352  // For GCTestMoveStackOnNextCall, it's important not to introduce an
  1353  // extra layer of call, since then there's a return before the "real"
  1354  // next call.
  1355  var GCTestMoveStackOnNextCall = gcTestMoveStackOnNextCall
  1356  
  1357  // For GCTestIsReachable, it's important that we do this as a call so
  1358  // escape analysis can see through it.
  1359  func GCTestIsReachable(ptrs ...unsafe.Pointer) (mask uint64) {
  1360  	return gcTestIsReachable(ptrs...)
  1361  }
  1362  
  1363  // For GCTestPointerClass, it's important that we do this as a call so
  1364  // escape analysis can see through it.
  1365  //
  1366  // This is nosplit because gcTestPointerClass is.
  1367  //
  1368  //go:nosplit
  1369  func GCTestPointerClass(p unsafe.Pointer) string {
  1370  	return gcTestPointerClass(p)
  1371  }
  1372  
  1373  const Raceenabled = raceenabled
  1374  
  1375  const (
  1376  	GCBackgroundUtilization            = gcBackgroundUtilization
  1377  	GCGoalUtilization                  = gcGoalUtilization
  1378  	DefaultHeapMinimum                 = defaultHeapMinimum
  1379  	MemoryLimitHeapGoalHeadroomPercent = memoryLimitHeapGoalHeadroomPercent
  1380  	MemoryLimitMinHeapGoalHeadroom     = memoryLimitMinHeapGoalHeadroom
  1381  )
  1382  
  1383  type GCController struct {
  1384  	gcControllerState
  1385  }
  1386  
  1387  func NewGCController(gcPercent int, memoryLimit int64) *GCController {
  1388  	// Force the controller to escape. We're going to
  1389  	// do 64-bit atomics on it, and if it gets stack-allocated
  1390  	// on a 32-bit architecture, it may get allocated unaligned
  1391  	// space.
  1392  	g := Escape(new(GCController))
  1393  	g.gcControllerState.test = true // Mark it as a test copy.
  1394  	g.init(int32(gcPercent), memoryLimit)
  1395  	return g
  1396  }
  1397  
  1398  func (c *GCController) StartCycle(stackSize, globalsSize uint64, scannableFrac float64, gomaxprocs int) {
  1399  	trigger, _ := c.trigger()
  1400  	if c.heapMarked > trigger {
  1401  		trigger = c.heapMarked
  1402  	}
  1403  	c.maxStackScan.Store(stackSize)
  1404  	c.globalsScan.Store(globalsSize)
  1405  	c.heapLive.Store(trigger)
  1406  	c.heapScan.Add(int64(float64(trigger-c.heapMarked) * scannableFrac))
  1407  	c.startCycle(0, gomaxprocs, gcTrigger{kind: gcTriggerHeap})
  1408  }
  1409  
  1410  func (c *GCController) AssistWorkPerByte() float64 {
  1411  	return c.assistWorkPerByte.Load()
  1412  }
  1413  
  1414  func (c *GCController) HeapGoal() uint64 {
  1415  	return c.heapGoal()
  1416  }
  1417  
  1418  func (c *GCController) HeapLive() uint64 {
  1419  	return c.heapLive.Load()
  1420  }
  1421  
  1422  func (c *GCController) HeapMarked() uint64 {
  1423  	return c.heapMarked
  1424  }
  1425  
  1426  func (c *GCController) Triggered() uint64 {
  1427  	return c.triggered
  1428  }
  1429  
  1430  type GCControllerReviseDelta struct {
  1431  	HeapLive        int64
  1432  	HeapScan        int64
  1433  	HeapScanWork    int64
  1434  	StackScanWork   int64
  1435  	GlobalsScanWork int64
  1436  }
  1437  
  1438  func (c *GCController) Revise(d GCControllerReviseDelta) {
  1439  	c.heapLive.Add(d.HeapLive)
  1440  	c.heapScan.Add(d.HeapScan)
  1441  	c.heapScanWork.Add(d.HeapScanWork)
  1442  	c.stackScanWork.Add(d.StackScanWork)
  1443  	c.globalsScanWork.Add(d.GlobalsScanWork)
  1444  	c.revise()
  1445  }
  1446  
  1447  func (c *GCController) EndCycle(bytesMarked uint64, assistTime, elapsed int64, gomaxprocs int) {
  1448  	c.assistTime.Store(assistTime)
  1449  	c.endCycle(elapsed, gomaxprocs, false)
  1450  	c.resetLive(bytesMarked)
  1451  	c.commit(false)
  1452  }
  1453  
  1454  func (c *GCController) AddIdleMarkWorker() bool {
  1455  	return c.addIdleMarkWorker()
  1456  }
  1457  
  1458  func (c *GCController) NeedIdleMarkWorker() bool {
  1459  	return c.needIdleMarkWorker()
  1460  }
  1461  
  1462  func (c *GCController) RemoveIdleMarkWorker() {
  1463  	c.removeIdleMarkWorker()
  1464  }
  1465  
  1466  func (c *GCController) SetMaxIdleMarkWorkers(max int32) {
  1467  	c.setMaxIdleMarkWorkers(max)
  1468  }
  1469  
  1470  var alwaysFalse bool
  1471  var escapeSink any
  1472  
  1473  func Escape[T any](x T) T {
  1474  	if alwaysFalse {
  1475  		escapeSink = x
  1476  	}
  1477  	return x
  1478  }
  1479  
  1480  // Acquirem blocks preemption.
  1481  func Acquirem() {
  1482  	acquirem()
  1483  }
  1484  
  1485  func Releasem() {
  1486  	releasem(getg().m)
  1487  }
  1488  
  1489  var Timediv = timediv
  1490  
  1491  type PIController struct {
  1492  	piController
  1493  }
  1494  
  1495  func NewPIController(kp, ti, tt, min, max float64) *PIController {
  1496  	return &PIController{piController{
  1497  		kp:  kp,
  1498  		ti:  ti,
  1499  		tt:  tt,
  1500  		min: min,
  1501  		max: max,
  1502  	}}
  1503  }
  1504  
  1505  func (c *PIController) Next(input, setpoint, period float64) (float64, bool) {
  1506  	return c.piController.next(input, setpoint, period)
  1507  }
  1508  
  1509  const (
  1510  	CapacityPerProc          = capacityPerProc
  1511  	GCCPULimiterUpdatePeriod = gcCPULimiterUpdatePeriod
  1512  )
  1513  
  1514  type GCCPULimiter struct {
  1515  	limiter gcCPULimiterState
  1516  }
  1517  
  1518  func NewGCCPULimiter(now int64, gomaxprocs int32) *GCCPULimiter {
  1519  	// Force the controller to escape. We're going to
  1520  	// do 64-bit atomics on it, and if it gets stack-allocated
  1521  	// on a 32-bit architecture, it may get allocated unaligned
  1522  	// space.
  1523  	l := Escape(new(GCCPULimiter))
  1524  	l.limiter.test = true
  1525  	l.limiter.resetCapacity(now, gomaxprocs)
  1526  	return l
  1527  }
  1528  
  1529  func (l *GCCPULimiter) Fill() uint64 {
  1530  	return l.limiter.bucket.fill
  1531  }
  1532  
  1533  func (l *GCCPULimiter) Capacity() uint64 {
  1534  	return l.limiter.bucket.capacity
  1535  }
  1536  
  1537  func (l *GCCPULimiter) Overflow() uint64 {
  1538  	return l.limiter.overflow
  1539  }
  1540  
  1541  func (l *GCCPULimiter) Limiting() bool {
  1542  	return l.limiter.limiting()
  1543  }
  1544  
  1545  func (l *GCCPULimiter) NeedUpdate(now int64) bool {
  1546  	return l.limiter.needUpdate(now)
  1547  }
  1548  
  1549  func (l *GCCPULimiter) StartGCTransition(enableGC bool, now int64) {
  1550  	l.limiter.startGCTransition(enableGC, now)
  1551  }
  1552  
  1553  func (l *GCCPULimiter) FinishGCTransition(now int64) {
  1554  	l.limiter.finishGCTransition(now)
  1555  }
  1556  
  1557  func (l *GCCPULimiter) Update(now int64) {
  1558  	l.limiter.update(now)
  1559  }
  1560  
  1561  func (l *GCCPULimiter) AddAssistTime(t int64) {
  1562  	l.limiter.addAssistTime(t)
  1563  }
  1564  
  1565  func (l *GCCPULimiter) ResetCapacity(now int64, nprocs int32) {
  1566  	l.limiter.resetCapacity(now, nprocs)
  1567  }
  1568  
  1569  const ScavengePercent = scavengePercent
  1570  
  1571  type Scavenger struct {
  1572  	Sleep      func(int64) int64
  1573  	Scavenge   func(uintptr) (uintptr, int64)
  1574  	ShouldStop func() bool
  1575  	GoMaxProcs func() int32
  1576  
  1577  	released  atomic.Uintptr
  1578  	scavenger scavengerState
  1579  	stop      chan<- struct{}
  1580  	done      <-chan struct{}
  1581  }
  1582  
  1583  func (s *Scavenger) Start() {
  1584  	if s.Sleep == nil || s.Scavenge == nil || s.ShouldStop == nil || s.GoMaxProcs == nil {
  1585  		panic("must populate all stubs")
  1586  	}
  1587  
  1588  	// Install hooks.
  1589  	s.scavenger.sleepStub = s.Sleep
  1590  	s.scavenger.scavenge = s.Scavenge
  1591  	s.scavenger.shouldStop = s.ShouldStop
  1592  	s.scavenger.gomaxprocs = s.GoMaxProcs
  1593  
  1594  	// Start up scavenger goroutine, and wait for it to be ready.
  1595  	stop := make(chan struct{})
  1596  	s.stop = stop
  1597  	done := make(chan struct{})
  1598  	s.done = done
  1599  	go func() {
  1600  		// This should match bgscavenge, loosely.
  1601  		s.scavenger.init()
  1602  		s.scavenger.park()
  1603  		for {
  1604  			select {
  1605  			case <-stop:
  1606  				close(done)
  1607  				return
  1608  			default:
  1609  			}
  1610  			released, workTime := s.scavenger.run()
  1611  			if released == 0 {
  1612  				s.scavenger.park()
  1613  				continue
  1614  			}
  1615  			s.released.Add(released)
  1616  			s.scavenger.sleep(workTime)
  1617  		}
  1618  	}()
  1619  	if !s.BlockUntilParked(1e9 /* 1 second */) {
  1620  		panic("timed out waiting for scavenger to get ready")
  1621  	}
  1622  }
  1623  
  1624  // BlockUntilParked blocks until the scavenger parks, or until
  1625  // timeout is exceeded. Returns true if the scavenger parked.
  1626  //
  1627  // Note that in testing, parked means something slightly different.
  1628  // In anger, the scavenger parks to sleep, too, but in testing,
  1629  // it only parks when it actually has no work to do.
  1630  func (s *Scavenger) BlockUntilParked(timeout int64) bool {
  1631  	// Just spin, waiting for it to park.
  1632  	//
  1633  	// The actual parking process is racy with respect to
  1634  	// wakeups, which is fine, but for testing we need something
  1635  	// a bit more robust.
  1636  	start := nanotime()
  1637  	for nanotime()-start < timeout {
  1638  		lock(&s.scavenger.lock)
  1639  		parked := s.scavenger.parked
  1640  		unlock(&s.scavenger.lock)
  1641  		if parked {
  1642  			return true
  1643  		}
  1644  		Gosched()
  1645  	}
  1646  	return false
  1647  }
  1648  
  1649  // Released returns how many bytes the scavenger released.
  1650  func (s *Scavenger) Released() uintptr {
  1651  	return s.released.Load()
  1652  }
  1653  
  1654  // Wake wakes up a parked scavenger to keep running.
  1655  func (s *Scavenger) Wake() {
  1656  	s.scavenger.wake()
  1657  }
  1658  
  1659  // Stop cleans up the scavenger's resources. The scavenger
  1660  // must be parked for this to work.
  1661  func (s *Scavenger) Stop() {
  1662  	lock(&s.scavenger.lock)
  1663  	parked := s.scavenger.parked
  1664  	unlock(&s.scavenger.lock)
  1665  	if !parked {
  1666  		panic("tried to clean up scavenger that is not parked")
  1667  	}
  1668  	close(s.stop)
  1669  	s.Wake()
  1670  	<-s.done
  1671  }
  1672  
  1673  type ScavengeIndex struct {
  1674  	i scavengeIndex
  1675  }
  1676  
  1677  func NewScavengeIndex(min, max ChunkIdx) *ScavengeIndex {
  1678  	s := new(ScavengeIndex)
  1679  	// This is a bit lazy but we easily guarantee we'll be able
  1680  	// to reference all the relevant chunks. The worst-case
  1681  	// memory usage here is 512 MiB, but tests generally use
  1682  	// small offsets from BaseChunkIdx, which results in ~100s
  1683  	// of KiB in memory use.
  1684  	//
  1685  	// This may still be worth making better, at least by sharing
  1686  	// this fairly large array across calls with a sync.Pool or
  1687  	// something. Currently, when the tests are run serially,
  1688  	// it takes around 0.5s. Not all that much, but if we have
  1689  	// a lot of tests like this it could add up.
  1690  	s.i.chunks = make([]atomicScavChunkData, max)
  1691  	s.i.min.Store(uintptr(min))
  1692  	s.i.max.Store(uintptr(max))
  1693  	s.i.minHeapIdx.Store(uintptr(min))
  1694  	s.i.test = true
  1695  	return s
  1696  }
  1697  
  1698  func (s *ScavengeIndex) Find(force bool) (ChunkIdx, uint) {
  1699  	ci, off := s.i.find(force)
  1700  	return ChunkIdx(ci), off
  1701  }
  1702  
  1703  func (s *ScavengeIndex) AllocRange(base, limit uintptr) {
  1704  	sc, ec := chunkIndex(base), chunkIndex(limit-1)
  1705  	si, ei := chunkPageIndex(base), chunkPageIndex(limit-1)
  1706  
  1707  	if sc == ec {
  1708  		// The range doesn't cross any chunk boundaries.
  1709  		s.i.alloc(sc, ei+1-si)
  1710  	} else {
  1711  		// The range crosses at least one chunk boundary.
  1712  		s.i.alloc(sc, pallocChunkPages-si)
  1713  		for c := sc + 1; c < ec; c++ {
  1714  			s.i.alloc(c, pallocChunkPages)
  1715  		}
  1716  		s.i.alloc(ec, ei+1)
  1717  	}
  1718  }
  1719  
  1720  func (s *ScavengeIndex) FreeRange(base, limit uintptr) {
  1721  	sc, ec := chunkIndex(base), chunkIndex(limit-1)
  1722  	si, ei := chunkPageIndex(base), chunkPageIndex(limit-1)
  1723  
  1724  	if sc == ec {
  1725  		// The range doesn't cross any chunk boundaries.
  1726  		s.i.free(sc, si, ei+1-si)
  1727  	} else {
  1728  		// The range crosses at least one chunk boundary.
  1729  		s.i.free(sc, si, pallocChunkPages-si)
  1730  		for c := sc + 1; c < ec; c++ {
  1731  			s.i.free(c, 0, pallocChunkPages)
  1732  		}
  1733  		s.i.free(ec, 0, ei+1)
  1734  	}
  1735  }
  1736  
  1737  func (s *ScavengeIndex) ResetSearchAddrs() {
  1738  	for _, a := range []*atomicOffAddr{&s.i.searchAddrBg, &s.i.searchAddrForce} {
  1739  		addr, marked := a.Load()
  1740  		if marked {
  1741  			a.StoreUnmark(addr, addr)
  1742  		}
  1743  		a.Clear()
  1744  	}
  1745  	s.i.freeHWM = minOffAddr
  1746  }
  1747  
  1748  func (s *ScavengeIndex) NextGen() {
  1749  	s.i.nextGen()
  1750  }
  1751  
  1752  func (s *ScavengeIndex) SetEmpty(ci ChunkIdx) {
  1753  	s.i.setEmpty(chunkIdx(ci))
  1754  }
  1755  
  1756  func CheckPackScavChunkData(gen uint32, inUse, lastInUse uint16, flags uint8) bool {
  1757  	sc0 := scavChunkData{
  1758  		gen:            gen,
  1759  		inUse:          inUse,
  1760  		lastInUse:      lastInUse,
  1761  		scavChunkFlags: scavChunkFlags(flags),
  1762  	}
  1763  	scp := sc0.pack()
  1764  	sc1 := unpackScavChunkData(scp)
  1765  	return sc0 == sc1
  1766  }
  1767  
  1768  const GTrackingPeriod = gTrackingPeriod
  1769  
  1770  var ZeroBase = unsafe.Pointer(&zerobase)
  1771  
  1772  const UserArenaChunkBytes = userArenaChunkBytes
  1773  
  1774  type UserArena struct {
  1775  	arena *userArena
  1776  }
  1777  
  1778  func NewUserArena() *UserArena {
  1779  	return &UserArena{newUserArena()}
  1780  }
  1781  
  1782  func (a *UserArena) New(out *any) {
  1783  	i := efaceOf(out)
  1784  	typ := i._type
  1785  	if typ.Kind_&abi.KindMask != abi.Pointer {
  1786  		panic("new result of non-ptr type")
  1787  	}
  1788  	typ = (*ptrtype)(unsafe.Pointer(typ)).Elem
  1789  	i.data = a.arena.new(typ)
  1790  }
  1791  
  1792  func (a *UserArena) Slice(sl any, cap int) {
  1793  	a.arena.slice(sl, cap)
  1794  }
  1795  
  1796  func (a *UserArena) Free() {
  1797  	a.arena.free()
  1798  }
  1799  
  1800  func GlobalWaitingArenaChunks() int {
  1801  	n := 0
  1802  	systemstack(func() {
  1803  		lock(&mheap_.lock)
  1804  		for s := mheap_.userArena.quarantineList.first; s != nil; s = s.next {
  1805  			n++
  1806  		}
  1807  		unlock(&mheap_.lock)
  1808  	})
  1809  	return n
  1810  }
  1811  
  1812  func UserArenaClone[T any](s T) T {
  1813  	return arena_heapify(s).(T)
  1814  }
  1815  
  1816  var AlignUp = alignUp
  1817  
  1818  func BlockUntilEmptyFinalizerQueue(timeout int64) bool {
  1819  	return blockUntilEmptyFinalizerQueue(timeout)
  1820  }
  1821  
  1822  func FrameStartLine(f *Frame) int {
  1823  	return f.startLine
  1824  }
  1825  
  1826  // PersistentAlloc allocates some memory that lives outside the Go heap.
  1827  // This memory will never be freed; use sparingly.
  1828  func PersistentAlloc(n uintptr) unsafe.Pointer {
  1829  	return persistentalloc(n, 0, &memstats.other_sys)
  1830  }
  1831  
  1832  // FPCallers works like Callers and uses frame pointer unwinding to populate
  1833  // pcBuf with the return addresses of the physical frames on the stack.
  1834  func FPCallers(pcBuf []uintptr) int {
  1835  	return fpTracebackPCs(unsafe.Pointer(getfp()), pcBuf)
  1836  }
  1837  
  1838  const FramePointerEnabled = framepointer_enabled
  1839  
  1840  var (
  1841  	IsPinned      = isPinned
  1842  	GetPinCounter = pinnerGetPinCounter
  1843  )
  1844  
  1845  func SetPinnerLeakPanic(f func()) {
  1846  	pinnerLeakPanic = f
  1847  }
  1848  func GetPinnerLeakPanic() func() {
  1849  	return pinnerLeakPanic
  1850  }
  1851  
  1852  var testUintptr uintptr
  1853  
  1854  func MyGenericFunc[T any]() {
  1855  	systemstack(func() {
  1856  		testUintptr = 4
  1857  	})
  1858  }
  1859  
  1860  func UnsafePoint(pc uintptr) bool {
  1861  	fi := findfunc(pc)
  1862  	v := pcdatavalue(fi, abi.PCDATA_UnsafePoint, pc)
  1863  	switch v {
  1864  	case abi.UnsafePointUnsafe:
  1865  		return true
  1866  	case abi.UnsafePointSafe:
  1867  		return false
  1868  	case abi.UnsafePointRestart1, abi.UnsafePointRestart2, abi.UnsafePointRestartAtEntry:
  1869  		// These are all interruptible, they just encode a nonstandard
  1870  		// way of recovering when interrupted.
  1871  		return false
  1872  	default:
  1873  		var buf [20]byte
  1874  		panic("invalid unsafe point code " + string(itoa(buf[:], uint64(v))))
  1875  	}
  1876  }
  1877  
  1878  type TraceMap struct {
  1879  	traceMap
  1880  }
  1881  
  1882  func (m *TraceMap) PutString(s string) (uint64, bool) {
  1883  	return m.traceMap.put(unsafe.Pointer(unsafe.StringData(s)), uintptr(len(s)))
  1884  }
  1885  
  1886  func (m *TraceMap) Reset() {
  1887  	m.traceMap.reset()
  1888  }
  1889  
  1890  func SetSpinInGCMarkDone(spin bool) {
  1891  	gcDebugMarkDone.spinAfterRaggedBarrier.Store(spin)
  1892  }
  1893  
  1894  func GCMarkDoneRestarted() bool {
  1895  	// Only read this outside of the GC. If we're running during a GC, just report false.
  1896  	mp := acquirem()
  1897  	if gcphase != _GCoff {
  1898  		releasem(mp)
  1899  		return false
  1900  	}
  1901  	restarted := gcDebugMarkDone.restartedDueTo27993
  1902  	releasem(mp)
  1903  	return restarted
  1904  }
  1905  
  1906  func GCMarkDoneResetRestartFlag() {
  1907  	mp := acquirem()
  1908  	for gcphase != _GCoff {
  1909  		releasem(mp)
  1910  		Gosched()
  1911  		mp = acquirem()
  1912  	}
  1913  	gcDebugMarkDone.restartedDueTo27993 = false
  1914  	releasem(mp)
  1915  }
  1916  

View as plain text